Variable Selection for Marginal Longitudinal Generalized Linear Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable selection for marginal longitudinal generalized linear models.

Variable selection is an essential part of any statistical analysis and yet has been somewhat neglected in the context of longitudinal data analysis. In this article, we propose a generalized version of Mallows's C(p) (GC(p)) suitable for use with both parametric and nonparametric models. GC(p) provides an estimate of a measure of model's adequacy for prediction. We examine its performance with...

متن کامل

Variable Selection for Linear Transformation Models via Penalized Marginal Likelihood

We study the problem of variable selection for linear transformation models, a class of general semiparametric models for censored survival data. The penalized marginal likelihood methods with shrinkage-type penalties are proposed to automate variable selection in linear transformation models; we consider the LASSO penalty and propose a new penalty called the adaptive-LASSO (ALASSO). Unlike the...

متن کامل

Variable Selection in Generalized Functional Linear Models.

Modern research data, where a large number of functional predictors is collected on few subjects are becoming increasingly common. In this paper we propose a variable selection technique, when the predictors are functional and the response is scalar. Our approach is based on adopting a generalized functional linear model framework and using a penalized likelihood method that simultaneously cont...

متن کامل

Adaptive Bayesian Criteria in Variable Selection for Generalized Linear Models

For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to othe...

متن کامل

Estimation and Variable Selection for Generalized Additive Partial Linear Models.

We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2005

ISSN: 0006-341X,1541-0420

DOI: 10.1111/j.1541-0420.2005.00331.x